Well Path Data Transfer Standard

7th SMi E&P Data & Information Management Conference
2–3 February, 2005
London

Paul Maton
maton@posc.org
Presentation Outline

Introduction
Uses and Requirements for WellPath data
Coordinate reference systems
Prior Well Path data formats
Well Path data in WITSML 1.3
Conclusions
Glossary

- **WITSML** – the Wellsite Information Transfer Standard Mark-up Language
- **Well** – A well is a unique surface location from which wellbores are drilled into the Earth for the purpose of either (1) finding or producing underground resources; or (2) providing services related to the production of underground resources.
- **Wellbore** – A wellbore is a unique, oriented path from the bottom of a drilled borehole to the surface of the Earth. The path must not overlap or cross itself.
Glossary – 2

- **obj_trajectory**: the WITSML construct that contains contextual information about the trajectory and the trajectoryStation data objects
- **obj_trajectoryStation**: the WITSML construct that references the containing well, wellbore and trajectory objects AND the inclination/azimuth and location data plus much (optional) instrument, acquisition and processing data
Deviated Well Terminology

- **Zero Measured Depth**
 - e.g: Rotary table, kelly bushing

- **Well Reference Point**
 - e.g: Ground level, Mud line

- **Vertical Reference Datum**
 - e.g: Mean Sea Level, Lowest Astronomical Tide

- **Zero True Vertical Depth**
 - Typically at VRD or ZMD

- **Parent well**

- **Sidetrack wellbore**

- **Azimuth**

- **Inclination**

Acknowledgement: UKOOA P7/2000
Presentation Outline

Introduction
Uses and Requirements for WellPath data
Coordinate reference systems
Prior Well Path data formats
Well Path data in WITSML 1.3
Conclusions
Life-Cycle Uses of WellPath Data

- Planning – can result in many well paths, some of which may be drilled
 - Define intersections with geological and reservoir targets
 - Ensure safety and collision avoidance
 - Support well engineering design in- or out-of-house
 - Regulatory permitting

- Drilling
 - Initial Drilling: Geosteering, MWD acquisition and near-real-time processing
 - Sharing and integration with specialist wellsite services
 - Lateral and infill drilling: Tie-in to existing wellbore
 - ...
Life-Cycle Uses of WellPath Data – 2

• E&P Operations
 - Provision and maintenance of Asset data resources for users and applications
 - Static and dynamic reservoir modelling, analysis and visualisation
 - Regulatory reporting

• Asset Disposal
 - Sale, relinquishment, or decommissioning
Presentation Outline

Introduction
Uses and Requirements for WellPath data
Coordinate reference systems
Prior Well Path data formats
Well Path data in WITSML 1.3
Conclusions
Coordinate Reference Systems

“Having spent the greater part of the last three months trying to spatially coordinate several disparate data sets, I have no doubt whatever that adoption of an Industry standard for Coordinate Reference Systems is a thoroughly sound proposal”

- Matthew Kirkman, Portfolio Manager, Drilling and Well Services Applications, BP and Chairman, WITSML SIG following a presentation to the WITSML SIG recommending adoption of the European Petroleum Survey Group (EPSG) geodetic parameter set
Insert ~4-6 Roel Nicolai slides
Presentation Outline

Introduction
Uses and Requirements for
WellPath data
Coordinate reference systems
Prior Well Path data formats
Well Path data in WITSML 1.3
Conclusions
Prior Well Path data formats

- WITS EDI (1980 and subsequently)
- LAS version 3 (2000)
- WITSML Version 1.3 (early 2005 release)
 - Trajectory and Trajectory Station – updated
 - WellPath Composite Object – new capability
Well Path Data Categories

- Well, Wellbore identification and context
 - Name, Field, Lease/Licence, Basin, Country etc
- Survey information and context
 - Operator, acquisition and processing contractor(s)
 - Dates, depth ranges
 - Survey tools, algorithms, corrections, gravity and magnetic field models, …
- Coordinate Reference System data
 - Geographic and projected coordinates and transformations
 - Vertical datums: permanent and drilling related
- Well Path Trajectory and Trajectory Stations
 - Measured depth, inclination and azimuth
 - True vertical depth, geographical, projected and engineering coordinates
Strengths of UKOOA P7/2000

- Supports multiple contractors, roles and survey phases, including wireline and MWD/LWD
- Supports multiple Vertical Datums and relationships between them
- References EPSG geodetic and coordinate system standards
- Supports post-acquisition life-cycle usages
Presentation Outline

Introduction
Uses and Requirements for WellPath data
Coordinate reference systems
Prior Well Path data formats
Well Path data in WITSML 1.3
Conclusions
Well Path data in WITSML

- Objectives in WITSML V1.3
 - Extend previous capabilities from WITSML V1.2 for reporting raw measurements to also support planned well paths and calculated well paths
 - Reuse WITSML specifications and objects as far as possible
Well Path data in WITSML

- well
- wellbore
- trajectory
- trajectoryStation
 - wellCRS
 - acqn. & proc. parameters (>45)
 - location
obj_well Example

<wells>
 <well uid="w1">
 <name>207/29-A6</name>
 <nameLegal>207/29-A6Z</nameLegal>
 <numGovt>207/29-A6Z</numGovt>
 <field>Saltire</field>
 <country>GBR</country>
 <block>207/29</block>
 <timeZone>0.00</timeZone>
 <operator>Highland Oil</operator>
 <waterDepth uom="ft" datum="VRD1">118.40</waterDepth>

 <!-- well location: the location of the well reference point -->
 <wellLocation>
 <nameWellCRS uidRef="proj1">ED50 / UTM Zone 31N</nameWellCRS>
 <easting uom="m">425353.84</easting>
 <northing uom="m">6623785.69</northing>
 <description>location of well reference point in proj system</description>
 </wellLocation>
 ...
 </well>
</wells>
wellCRS Example (geographic)

<wellCRS uid="geog1">
 <name>ED50</name>
 <geographic>
 <nameCRS namingSystem="epsg" code="4230">ED50</nameCRS>
 <geodeticDatumCode>ED50</geodeticDatumCode>
 <xTranslation uom="m">-89.5</xTranslation>
 <yTranslation uom="m">-93.8</yTranslation>
 <zTranslation uom="m">-123.1</zTranslation>
 <xRotation uom="seca">0</xRotation>
 <yRotation uom="seca">0</yRotation>
 <zRotation uom="seca">-0.156</zRotation>
 <scaleFactor>1.200</scaleFactor>
 <ellipsoidName namingSystem="epsg" code="7022">International 1924</ellipsoidName>
 <ellipsoidCode>INT24</ellipsoidCode>
 <ellipsoidSemiMajorAxis uom="m">6378388</ellipsoidSemiMajorAxis>
 <inverseFlattening>297.0</inverseFlattening>
 </geographic>
</wellCRS>
wellCRS Examples (projected, local)

```xml
<wellCRS uid="proj1">
  <name>UTM31N</name>
  <mapProjection>
    <name>UTM Zone 31N</name>
    <nameCRS namingSystem="epsg" code="23031">ED50 / UTM Zone 31N</nameCRS>
    <projectionCode>UniversalTransverseMercator</projectionCode>
    <zone>31N</zone>
  </mapProjection>
</wellCRS>

<wellCRS uid="localWell11">
  <name>WellOneWSP</name>
  <localCRS>
    <usesWellAsOrigin>true</usesWellAsOrigin>
    <northDirection>Grid north</northDirection>
    <yAxisAzimuth uom="dega">0</yAxisAzimuth>
    <xRotationClockwise>true</xRotationClockwise>
  </localCRS>
</wellCRS>
```
obj_trajectory Example

<trajectorys>
 <trajectory uid="trajacq1" uidWell="w1" uidWellbore="wb1">
 <nameWell>207/29-A6</nameWell>
 <nameWellbore>207/29-A6Z</nameWellbore>
 <name>Acquisition trajectory #1</name>
 <dTImTrajStart>1972-06-28T00:00:00</dTImTrajStart>
 <mdMn uom="ft">0.0</mdMn>
 <mdMx uom="ft">1824.0</mdMx>
 <serviceCompany>Tain Drilling</serviceCompany>
 <definitive>false</definitive>
 </trajectory>
 <trajectory uid="trajacq2" uidWell="w1" uidWellbore="wb1">
 <nameWell>207/29-A6</nameWell>
 <nameWellbore>207/29-A6Z</nameWellbore>
 <name>Acquisition trajectory #2</name>
 <dTImTrajStart>1972-07-09T00:00:00</dTImTrajStart>
 <serviceCompany>AC Surveys</serviceCompany>
 <mdMn uom="ft">1915</mdMn>
 <mdMx uom="ft">3584</mdMx>
 </trajectory>
</trajectorys>
obj_trajectory Example 2

<trajectory uid="trajgeometry" uidWell="w1" uidWellbore="wb1">
 <nameWell>207/29-A6</nameWell>
 <nameWellbore>207/29-A6Z</nameWellbore>
 <name>Wellbore Path Geometry</name>
 <dTimTrajStart>1994-04-15T00:00:00</dTimTrajStart>
 <mdMn uom="ft" datum="ZMD1">173.09</mdMn>
 <mdMx uom="ft" datum="ZMD1">4380.15</mdMx>
 <serviceCompany>Directional Services Inc.</serviceCompany>
 <magDeclUsed uom="dega">-1.42</magDeclUsed>
 <gridCorUsed uom="dega">-1.15</gridCorUsed>
 <definitive>true</definitive>
 <finalTraj>true</finalTraj>
 <aziRef>Grid north</aziRef>
 <trajectoryStation uid="row1">
 <typeTrajStation>O</typeTrajStation>
 ...
 </trajectoryStation>
</trajectory>
Conclusions

- WITSML V1.3 public comment period: mid-December through January. Feedback is currently being evaluated.
- WITSML V1.3 release is anticipated soon. The next feedback, evaluation, and enhancement cycle will follow.
- Use of V1.3 in pilot testing and commercial products anticipate during the first half of 2005.
- Well path uses cases to include: raw measurement reporting, planned well path transfer, and post-processing wellpath transfer.
Paul Maton
Director, POSC (Europe)
14 Chaucer Avenue
Weybridge
KT13 0SS
U.K.

+44 1932 828794 phone
+44 1932 831756 fax
maton@posc.org
http://www.posc.org